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Abstract We present a novel first-order nonnegative integer-valued autoregressive
model for stationary count data processes with Bernoulli-geometric marginals based
on a new type of generalized thinning operator. It can be used for modeling time
series of counts with equidispersion, underdispersion and overdispersion. The main
properties of the model are derived, such as probability generating function, moments,
transition probabilities and zero probability. The maximum likelihood method is used
for estimating the model parameters. The proposed model is fitted to time series of
counts of iceberg orders and of cases of family violence illustrating its capabilities in
challenging cases of overdispersed and equidispersed count data.

Keywords INAR(1) process · Bernoulli distribution · Geometric distribution ·
Integer-valued time series · Binomial thinning · Negative binomial thinning
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1 Introduction

During the last three decades, several thinning-based models have been developed
for the analysis of time series of counts (Weiß 2008). The first works concentrated
on the use of the Poisson distribution as an integral feature of the process. McKen-
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zie (1985)) and, independently, Al-Osh and Alzaid (1987) introduced the first-order
integer-valued autoregressive [INAR(1)] model based on the binomial thinning oper-
ator (Steutel and van Harn 1979) with Poisson marginal, called Poisson INAR(1)
process. In practice, however, the Poisson distribution is not always suitable for mod-
eling, because one commonly observes overdispersed or underdispersed counts (i. e.,
counts having a variance being larger/smaller than their mean). Therefore, several
alternatives to models with a Poisson marginal have been proposed in the litera-
ture.

A simple approach based on the binomial thinning is to only change the innovations’
distribution in such a way that the marginal distribution of the process is underdis-
persed or overdispersed. Following this path, Schweer andWeiß (2014) investigated an
INAR(1) process with compound Poisson innovations (and, hence, compound Pois-
son observations), which is suitable for modeling time series with overdispersion,
while the INAR(1) model considered by Weiß (2013) exhibits underdispersion. Jazi
et al. (2012) discussed an INAR(1) process with zero-inflated Poisson innovations,
while Bourguignon and Vasconcellos (2015) considered the case of power series
innovations. Kim and Lee (2017) introduced an INAR(1) model with Katz family
innovations [INARKF(1)], which can be used for modeling time series of counts
with equidispersion, underdispersion and overdispersion. However, the marginal dis-
tribution of the INARKF(1) process is rather complicated and does not have closed
form.

Instead of onlymodifying the innovations’ distribution, onemay also use a different
type of thinning operator. A widely discussed instance is the new geometric INAR(1)
model introduced by Ristić et al. (2009), which uses the negative binomial thinning
operator and has geometricmarginal distribution (thus overdispersion). Our aim in this
paper is to introduce a novel type of INAR(1) model based on a new generalized thin-
ning operator. The generated process is stationary with Bernoulli-geometric marginals
and, thus, allows to model nonnegative integer-valued time series with equidispersion,
underdispersion and overdispersion having the same autocorrelation structure as the
conventional AR(1) model, i. e., the autoregressive models of order 1. To create the
new type of generalized thinning operator, we use a convolution of the Bernoulli
and geometric distribution such that the counting series may show equidispersion,
overdispersion or underdispersion. Therefore, our thinning operator extends the bino-
mial thinning (Steutel and van Harn 1979) and negative binomial thinning operator
(Ristić et al. 2009) in such a way that it is possible to consider equidispersion, overdis-
persion or underdispersion simultaneously for both the counting within the thinning
operator and the marginal distribution of the process.

This paper is organized as follows. Section 2 introduces the BerG distribution as
a convolution of the Bernoulli and geometric distribution, and uses it to construct
new type of thinning operator. Section 3 applies this thinning operator to construct a
new model for AR(1)-like count data processes, which includes the popular INAR(1)
models based on binomial thinning or based on negative binomial thinning as special
cases. Section 4 discusses parameter estimation and presents a simulation study to
investigate the performance of these approaches. Section 5 analyzes two real data
examples from different areas. Finally, we conclude in Sect. 6.
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2 The BerG distribution

Let N,N0 and Z denote the sets of positive integers, nonnegative integers and all inte-
gers, respectively. All random variables will be defined on the same probability space.
In Sect. 2.1, we discuss the distribution of the convolution of a Bernoulli and a geo-
metric random variable, which we refer to as the BerG distribution. This distribution is
used in Sect. 2.2 to define a novel thinning operation, BiNB thinning, which contains
the well-known binomial thinning and negative binomial thinning as a boundary case.
Later in Sect. 3, we use this thinning operation to define a new and quite flexible model
for autoregressive count data time series.

2.1 Properties of the BerG distribution

The analysis of the convolution of binomial and negative binomial random variables,
say Z (n) := X (n) + Y (n) with X (n) ∼ Bin(n, π) and Y (n) ∼ NB

(
n, 1/(1 + μ)

)

with n ∈ N, 0 < π < 1 and μ > 0, dates back to Kemp (1979); we denote this
distribution as BiNB(n, π, μ). This distribution is a special case of the generalized
inverse trinomial distribution, it corresponds to the GIT3,1(n; p1, p2, p3) model with
p1 := 1−π

μ+1 , p2 := π
μ+1 , p3 := μ

μ+1 . Properties of this distribution are summarized in
Sect. 4.2 of Aoyama et al. (2008).

In this article, our main interest is in the case n = 1, i. e., in the sum Z :=
X + Y , where X and Y are independent and follow the Bernoulli distribution Ber(π)

and geometric distribution Geom
(
1/(1 + μ)

)
with means 0 < π < 1 and μ > 0,

respectively. The distribution of Z , which we refer to as BerG(π, μ), has support
N0, i. e., it is a count data distribution. The stochastic properties of the BerG(π, μ)

distribution immediately follow from the properties of the GIT3,1
(
1; 1−π

μ+1 ,
π

μ+1 ,
μ

μ+1

)

distribution given in Sect. 4.2 of Aoyama et al. (2008). In particular, its probability
mass function (PMF) is given by

Pr(Z = z) =
{ 1−π

1+μ
, if z = 0,

(μ + π)
μz−1

(1+μ)z+1 , if z = 1, 2, . . . ,
(1)

and the probability generating function (PGF) of Z , denoted by ϕZ (s) := E[sZ ], is
given by

ϕZ (s) = 1 − π(1 − s)

1 + μ(1 − s)
. (2)

The mean and variance of the BerG distribution defined in (1) are

E(Z) ≡ μZ = π + μ and Var(Z) ≡ σ 2
Z = π(1 − π) + μ(1 + μ). (3)

Thus, the dispersion index, which is the variance-to-mean ratio, is given by

IZ := σ 2
Z

μZ
= 1 + μ − π.
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(a)
IZ

μZ

(b)

μ

(c)

μ

Fig. 1 a Possible mean-dispersion combinations (μZ , IZ ) for BerG distribution; dashed line: equidisper-
sion. b E(Z3) and c E(Z4) againstμ for equidispersed distributions BerG(μ, μ) (black) and Poi(2μ) (gray)

It follows that this distribution shows equidispersion for μ = π (but differs from
the Poisson distribution, see below), while we have underdispersion for μ < π , and
overdispersion for μ > π .

The attainable range ofmeansμZ and dispersion indexes IZ is illustrated by Fig. 1a,
where the dashed line represents the case of equidispersion. For large mean values,
only overdispersion can be achieved for the BerG distribution.

More generally, the r th factorial moment μ(r) ≡ E
[
Z . . . (Z − r + 1)

]
with r ∈ N

equals
μ(r) = μr−1 (π + μ) r !. (4)

In particular, the third and fourth moments of Z are

E(Z3) = (π+μ)
[
1+6μ(1+μ)

]
and E(Z4) = (π+μ) (1+2μ)

[
1+12μ(1+μ)

]
.

(5)
The formulae (4) and (5) show that the equidispersed BerG distribution, i. e., the

BerG(μ,μ) distribution with 0 < μ < 1, does not coincide with its Poisson counter-
part Poi(2μ). Furthermore, the pgf of the Poi(2μ) distribution is exp[−2 μ(1 − s)],
being different from the pgf shown in (2) if π = μ. As illustrated in Fig. 1b and c, the
differences between their third and fourth moments increase with increasing μ.

Remark 1 (Relation to Zero-Modified Geometric Distribution) The zero-modified
geometric distribution ZMG(κ, μ) with μ > 0 and κ ∈ (−1/μ, 1) is defined by
the PGF

ϕZ (s) = κ + (1 − κ)
[
1 + μ(1 − s)

]−1

and the PMF

Pr(Z = z) = I{z=0} κ + (1 − κ)
1

1 + μ

(
μ

1 + μ

)z

,

see Sect. 8.2.3 in Johnson et al. (2005). The moments E[Zn] are obtained from those
of the geometric parent distributionGeom

(
1/(1+μ)

)
, sayμn , by computing E[Zn] =

(1 − κ) μn . In particular,
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E(Z) = (1 − κ) μ, Var(Z) = (1 − κ) μ(1 + μ) + κ(1 − κ) μ2.

If κ > 0, then the geometric’s zero probability is increased (zero-inflation), while it
is decreased for κ < 0 (zero-deflation). The variance-to-mean ratio is

Var(Z)

E(Z)
= 1 + μ (1 + κ),

which is < 1 (underdispersion) if κ < −1, and vice versa.
Comparing with (2) and (1), it becomes clear that the BerG(π, μ) distribution

is a special type of zero-deflated ZMG(κ, μ)-distribution, where κ := −π/μ. This
confirms that we have underdispersion for μ < π , and vice versa.

2.2 The BiNB thinning operation

The BerG distribution discussed in Sect. 2.1 is now used to construct a new type
of generalized thinning operator (Latour 1998; Weiß 2008), with the counting series
consisting of independent and identically distributed (i. i. d.) BerG random variables.

Definition 1 (BiNB thinning) Let Z be a nonnegatively integer-valued random vari-
able, and let α, β ≥ 0 be real numbers such that α + β ∈ [0, 1). Then the BiNB
thinning operator, denoted by (α, β)�, is defined as

(α, β) � Z :=
Z∑

j=1

Wj ,

where {Wj }Zj=1 is a sequence of i. i. d. BerG(α, β) random variables with mean α+β,
being mutually independent of Z . Note that for Z = 0, the empty sum is defined as 0.

Note that the restriction “α +β ∈ [0, 1)” in Definition 1 could be relaxed to requiring
α < 1, since the BerG(α, β) is well defined for any β ≥ 0. But to make the operation
“�” a “thinning” (i.e., to guarantee that E

[
(α, β) � Z

]
< E[Z ]), and since we need

this restriction later anyway for obtaining a stationary solution, we already used the
more restrictive requirement “α + β ∈ [0, 1)” here.

Note that BiNB thinning is not only a generalized thinning operator in the sense
of Latour (1998), Weiß (2008), it also constitutes an instance of extended thinning as
defined by Zhu and Joe (2003) for some parameterizations.

By construction, the conditional distribution of (α, β) � Z given Z is the
BiNB(Z , α, β) distribution (or equivalently, the GIT3,1

(
Z; 1−α

β+1 ,
α

β+1 ,
β

β+1

)
distribu-

tion, see Sect. 2.1), such that conditional properties of (α, β)� Z given Z immediately
follow from the results given in Sect. 4.2 of Aoyama et al. (2008). For instance, the
conditional PGF equals

ϕ(α,β)� Z |Z (s) ≡ E
[
s(α,β)� Z

∣∣ Z
] =

[
1 − α(1 − s)

1 + β(1 − s)

]Z

. (6)
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The PMF of (α, β) � Z |Z = z is given by (Aoyama et al. 2008)

Pr
(
(α, β) � z

)

=
min {z,k}∑

i=0

z

z + k − i

(
z + k − i

z − i, i, k − i

) (
1 − α

1 + β

)z−i (
α

1 + β

)i (
β

1 + β

)k−i

,

(7)

for k = 0, 1, 2, . . ., where
( x
x1,x2,x3

) = x !/(x1!x2!x3!).
Proposition 1 Let Z be a nonnegatively integer-valued random variable, and let
α, β ≥ 0 with α + β ∈ [0, 1). Then,

(α, β) � Z =
Z∑

j=1

(Bj + G j )
D=

Z∑

j=1

Bj +
Z∑

j=1

G j = α ◦ Z + β ∗ Z , (8)

where the operator “◦” is the binomial thinning operator (Steutel and van Harn 1979)
with the {Bj }Zj=1 being i. i. d. Ber(α) random variables, independent of Z, and where
“∗” denotes the negative binomial thinning operator (Ristić et al. 2009) with the
{G j }Zj=1 being i. i. d. Geom

(
1/(1 + β)

)
random variables, independent of Z. The

counting series in α ◦ Z and β ∗ Z are mutually independent random variables.

Note that as discussed after Definition 1, it would be possible to relax the requirement
“α + β ∈ [0, 1)” to α < 1.

It is interesting to note that the right side of Eq. (8) is the sum of two know thinning
operators. The first term represents the binomial thinning operator proposed by Steutel
and van Harn (1979), where the counting sequence has the Bernoulli distribution
with mean α ∈ [0, 1), and the second term represents the negative binomial thinning
operator introduced by Ristić et al. (2009), where the counting sequence has the
geometric distribution (with mean β ∈ [0, 1) if considering “∗” to be a “thinning”).
In particular, this implies that both binomial thinning and negative binomial thinning
are just boundary cases of BiNB thinning (β = 0 and α = 0, respectively). Nastić
et al. (2016) introduced a thinning operator which is a mixture of the Bernoulli and
geometric distributed random variables. However, this operator is different from the
new BiNB thinning operator.

Utilizing the relation to the GIT3,1-distribution (Aoyama et al. 2008, Sect. 4.2), it
immediately follows that the conditional r th factorial moment of (α, β) � Z given Z
equals

Z
min {r,Z}∑

i=0

(
r

i

)
(Z + r − i − 1)!

(Z − i)! αi βr−i ,

in particular,

E
[
(α, β) � Z

∣∣ Z
]=Z (α + β), V

[
(α, β) � Z

∣∣ Z
]=Z

[
α(1 − α) + β(1+β)

]
.

(9)
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So by the laws of total expectation and total variance, it follows that

E
[
(α, β) � Z

] = μZ (α + β), V
[
(α, β) � Z

]

= σ 2
Z (α + β)2 + μZ

[
α(1 − α) + β(1 + β)

]
,

also see p. 240 in Zhu and Joe (2003). If the thinned random variable Z follows itself
a BerG distribution, then the following result holds.

Proposition 2 Let Z ∼ BerG(π, μ) and � be the BiNB thinning operator defined
above. Then, (α, β) � Z ∼ ZMG

(
κ, β + μ(α + β)

)
with κ := [β − π(α + β)]/[β +

μ(α + β)], which is zero-deflated for π > β/(α + β), and vice versa.

Proof Using (2) and comparing with Remark 1, we obtain that

ϕ(α,β)�Z (s) = ϕZ

(
1 − α(1 − s)

1 + β(1 − s)

)
=

1+β(1−s)−β π(1−s)−α π(1−s)
1+β(1−s)

1+β(1−s)+β μ(1−s)+α μ(1−s)
1+β(1−s)

= 1 + [β − π(α + β)](1 − s)

1 + [β + μ(α + β)](1 − s)
= κ + 1 − κ

1 + [β + μ(α + β)](1 − s)
,

which completes the proof. �	
We conclude this section by considering the boundary cases of binomial thinning
(β = 0) and negative binomial thinning (α = 0), respectively. In the case of binomial
thinning, β = 0 implies that we are always concerned with a zero-deflated type of
ZMG-distribution. In fact, Proposition 2 can be further simplified.

Corollary 3 Let Z ∼ BerG(π, μ) and ◦ be binomial thinning operator defined above.
Then, α ◦ Z ∼ BerG(α π, α μ).

Proof Note that (remember (2))

ϕα◦Z (s) = ϕZ (1 − α(1 − s)) = 1 − π{1 − [1 − α(1 − s)]}
1 + μ{1 − [1 − α(1 − s)]} = 1 − α π(1 − s)

1 + α μ(1 − s)
.

�	
Corollary 3 shows that the BerG distribution is invariant under binomial thinning.

In the case of negative binomial thinning (α = 0), in contrast, we are always
concerned with a zero-inflated type of ZMG-distribution (Remark 1), since π < 1 in
Proposition 2.

Corollary 4 Let Z ∼ BerG(π, μ) and ∗ be negative binomial thinning operator
defined above. Then, β ∗ Z ∼ ZMG

(
(1 − π)/(1 + μ), (1 + μ)β

)
, which is a zero-

inflated geometric distribution.

In Sect. 3, we shall use the newBiNB thinning operator “(α, β)�” to construct amodel
for count data processes having the same autocorrelation structure as the conventional
AR(1) models, i. e., the autoregressive models of order 1.

123



M. Bourguignon, C. H. Weiß

3 BerG-INAR(1) processes with equi-, under- or overdispersion

In this section, we introduce a novel first-order nonnegative integer-valued autoregres-
sive (INAR(1)) model for stationary count data processes with Bernoulli-geometric
marginals. It shall turn out, see Sect. 3.2, that the proposed model contains the famous
INAR(1) model by McKenzie (1985) as a special case, but also the INAR(1)-type
model by Ristić et al. (2009) (for the latter, see Sect. 3.3).

3.1 INAR(1) model based on BiNB thinning

Let {Zt }t∈Z be a count data process. We consider the case where the counts Zt follow
a BerG distribution, thus being able to describe underdispersion, equidispersion or
overdispersion, see Sect. 2.1. To mimic an AR(1) serial dependence structure, we use
the BiNB thinning operator “(α, β)�” proposed in Sect. 2.2.

Definition 2 (BerG-INAR(1)Bi N B process)Adiscrete-time stochastic process {Zt }t∈Z
is said to be aBiNB-thinning-based first-order integer-valued autoregressive (INAR(1)
BiNB) process with marginals BerG(π, μ) if it satisfies the following equation

Zt = (α, β) � Zt−1 + εt , t ∈ Z, (10)

whereα, β ≥ 0withα+β ∈ (0, 1), {εt }t∈Z is an innovation sequence of i. i. d. nonneg-
ative integer-valued randomvariables not depending on past values of {Zt }t∈Z, {Zt }t∈Z
is a stationary process with BerG(π, μ) marginals, i. e., with probability mass func-
tion given by Eq. (1). It is also assumed that the counting series of (α, β) � Zt−1 is
independent of other counting series, and, moreover, independent of the innovation
sequence {εt }t∈Z.
By construction, the process described by Zt = (α, β)�Zt−1+εt constitutes a homo-
geneous Markov chain. The subsequent proposition shows (under certain conditions)
that it is possible to find a distribution of the innovations {εt }t∈Z such that the observa-
tions are BerG-distributed as required by Definition 2. So a stationary solution exists
under these conditions. We shall see that the distribution of the innovations satisfies
P(εt = k) > 0 for all k ∈ N0, so all transition probabilities (as a convolution of the
BiNB distribution and the εt ’s distribution) are truly positive [closed-form formulae
are derived in (15) below]. Hence, we know that the Markov chain is irreducible and
aperiodic. And since we proved the existence of a stationary marginal distribution
(the BerG distribution according to Definition 2), this distribution is unique, and the
corresponding Markov chain is even ergodic (Feller 1968).

Proposition 5 If π <
β

α+β
and μ >

β
1−α−β

, then the distribution of the innovations
sequence {εt }t∈Z is a convolution between two independent random variables with
Y1 ∼ BerG(π, β − π(α + β)) and Y2 ∼ ZMG

([β + μ(α + β)]/μ, μ
)
. In particular,

P(εt = k) > 0 for all k ∈ N0 holds.

Note that Y2 follows a zero-inflated geometric distribution according to Remark 1.
The conditions on the parameters given in Proposition 5 should not be violated. For

123



An INAR(1) process for modeling count time series…

example, in the boundary caseμ = β
1−α−β

, the distribution ofY2 becomesZMG(1, μ),

so Y2 ≡ 0 with probability 1. If even μ <
β

1−α−β
, then the ZMG’s inflation parameter

would be larger than 1, which is not possible. An analogous argumentation holds with
respect to Y1, whereπ ≥ β

α+β
causes the geometric parameter of the BerG distribution

to be ≤ 0.

Proof Using Proposition 2, we have

ϕε(s) = ϕX (s)

ϕX

(
1−α(1−s)
1+β(1−s)

) = 1 − π(1 − s)

1 + μ(1 − s)
· 1 + [β + μ(α + β)](1 − s)

1 + [β − π(α + β)](1 − s)

= 1 − π(1 − s)

1 + [β − π(α + β)](1 − s)
· 1 + [β + μ(α + β)](1 − s)

1 + μ(1 − s)
= ϕ1(s) ϕ2(s),

where, under the above condition, ϕ1(s) = 1−π(1−s)
1+[β−π(α+β)](1−s) and ϕ2(s) =

1+[β+μ(α+β)](1−s)
1+μ(1−s) are the PGF of Y1 and Y2, respectively. �	

Let us now discuss some properties of the newBerG-INAR(1)BiNB process satisfying
the constraints

α, β ≥ 0, μ, π, α + β > 0, π, α + β < 1; π <
β

α+β
, μ >

β
1−α−β

. (11)

Using (6), the conditional PGF of Zt given Zt−1 becomes

ϕZt |Zt−1(s) =
[
1 − α(1 − s)

1 + β(1 − s)

]Zt−1

ϕε(s),

where ϕε(s) is the PGF of {εt }t∈Z. Similarly, from (9), we obtain the conditional mean
and variance as

E[Zt | Zt−1] = (α + β) Zt−1 + με,

V [Zt | Zt−1] = [
α(1 − α) + β(1 + β)

]
Zt−1 + σ 2

ε . (12)

Here, the innovations have mean (see (3) and Remark 1)

E(εt ) ≡ με = E[Y1] + E[Y2] = (π + μ) (1 − α − β).

Similarly, the innovations’ variance equals

Var(εt ) ≡ σ 2
ε = V [Y1] + V [Y2] = [

β(1 − π) − πα
] [

1 + β(1 − π) − πα
]

+ π(1 − π) + (
μ − β(1 + μ) − μα

) [
(1 + μ)(1 + β) + μα

]
.

According to (12), both the conditionalmean and the variance are linear in the previous
observation. In particular, the new BerG-INAR(1)BiNB model belongs to the class
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of CLAR(1) models (conditional linear autoregressive) as defined by Grunwald et al.
(2000). As a consequence, the autocorrelation function (ACF) decays exponentially,

Corr(Zt , Zt−h) ≡ ρ(h) = (α + β)h, h ≥ 0. (13)

By using Proposition 5 togetherwith (1) andRemark 1, the PMFof {εt }t∈Z is expressed
as

Pr(εt = 0) =
(

1 − π

1 + β(1 − π) − πα

)
·
(
1 + β(1 + μ) + μα

1 + μ

)
,

and

Pr(εt = k) = 1 − π

1 + β − π(α + β)
· [μ − β − μ(α + β)]μk−1

(1 + μ)k+1

+ μ − β − μ(α + β)

μ(1 + μ)
· (1 − π)[β − π(α + β)]k

[1 + β − π(α + β)]k+1

+ [β − π(α + β) + π ][1 − (β + μ(α + β))/μ]μk

[β − π(α + β)][1 + β − π(α + β)](1 + μ)k+1

×
[

(π β+π α−β)(1+μ)
μ(π β+π α−β−1)

]k
μ(π β + π α − β − 1) − (π β + π α − β)(1 + μ)

μ + π β + π α − β
,

(14)

for k ≥ 1.

Remark 2 (Computation and Simulation) The marginal distribution of the observa-
tions (i. e., the BerG distribution), the conditional distribution of the BiNB thinning
operation (i. e., the BiNB distribution) as well as the distribution of the BerG-
INAR(1)BiNB’s innovations are all convolutions of standard distributions. Thismakes
it easy to implement these distributions in practice, i. e., to compute their PMF or to
simulate them. In Sect. 4 below about parameter estimation, we used the R language
(R Core Team 2016) for implementation. To simulate a BerG random variable, for
instance, we simulate a Bernoulli and a geometric one with R’s rbinom and rgeom,
respectively, and then we take their sum. To compute the PMF as required, e. g.,
for maximum likelihood estimation (see Sect. 4 for details), it is not necessary to
typewrite such complex formulae like (1), (7) or (14). Instead, one can just use R’s
convolve(…, type=“open”) together with, e. g., dbinom and dgeom in the
case of the BerG distribution.

The transition probabilities p( j |i) = Pr(Zt = j |Zt−1 = i) of the BerG-
INAR(1)BiNB process are given by

p( j |0) = Pr(εt = j),

p(0|i) =
(
1 − α

1 + β

)i

·
(

1 − π

1 + β(1 − π) − πα

)
·
(
1 + β(1 + μ) + μα

1 + μ

)
, i ≥ 1

p( j |i) =
j∑

k=0

Pr
(
(α, β) � Zt−1 = k

∣∣Zt−1 = i
) · Pr(εt = j − k), i, j ≥ 1. (15)
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Thus, we obtain that the transition probability from zero to (non-)zero equals

η := Pr(Zt �= 0|Zt−1 = 0) = (1 − α)(π + μ)

(1 + μ)[1 + β − (α + β)π ]
and

1 − η := Pr(Zt = 0|Zt−1 = 0) = (1 − π)[1 + β(1 + μ) + μα]
(1 + μ)[1 + β(1 − π) − πα] ,

respectively. The run length of zeros in the process, N , follows a geometric distribution
with termination probability η, i. e., Pr(N = n) = η(1 − η)n−1, n ≥ 1. Thus, the
average run length of zeros in the process is given by

E(N ) = (1 + μ)
[
1 + β − (α + β)π

]

(1 − α)(π + μ)
.

We conclude this section by pointing out that for later analysis, the following repa-
rameterization is advantageous:

ρ ∈ (0, 1), κ ∈ [0, 1] with ρ := α + β, κ := α
α+β

, (16)

which is solved as α = κρ and β = (1 − κ)ρ. Then the parameter constraints (11)
become

μ > 0, 0 < π, ρ < 1; 0 ≤ κ ≤ 1, κ < 1 − π, μ(1 − ρ) > (1 − κ)ρ. (17)

Note that ρ(h) = ρh , so ρ expresses the extent of autocorrelation.

3.2 INAR(1) model based on binomial thinning operator

The INAR(1)BiNB model recursion (10) reduces to the one of the well-known
INAR(1) model as introduced by McKenzie (1985) if β = 0, i. e.,

Zt = α ◦ Zt−1 + εt , t ∈ Z,

which corresponds to the case κ = 1 in terms of the parameterization (16). This model
has been intensively studied in the literature, e. g., by Jazi et al. (2012) for count data
time series showing an excessive number of zeros, by Schweer and Weiß (2014) for
overdispersed counts, by Weiß (2013) for underdispersed counts, or by Moriña et al.
(2011) and Bourguignon et al. (2016) for counts showing seasonality.

It has to be noted, however, that the condition given in Proposition 5 [also see (11)]
cannot be satisfied if β = 0, since π cannot become smaller than 0 [an analogous con-
tradiction follows from (17) if κ = 1]. This implies that the BerG distribution cannot
be a marginal distribution (being preserved for any α) of the usual INAR(1) process.
This is reasonable since the BerG distribution is not infinitely divisible (remember that
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it may exhibit underdispersion) and therefore not discrete self-decomposable (Steutel
and van Harn 1979). But certainly, one may use an INAR(1) model together with
BerG-distributed innovations.

3.3 INAR(1) model based on negative binomial thinning operator

Another special case of the INAR(1)BiNB model is obtained by setting α = 0 in
Definition 2,which corresponds to the case κ = 0 in terms of the parameterization (16).
Then we obtain the INAR(1)NB model being based on the negative binomial thinning
operator (Ristić et al. 2009). In contrast to McKenzie’s INAR(1) model mentioned in
Sect. 3.2 before, the INAR(1)NB model is able to generate BerG-distributed counts.

Definition 3 Adiscrete-time nonnegative integer-valued stochastic process {Zt }t∈Z is
said to be an INAR(1)NB processwithmarginals BerG(π, μ) if it satisfies the following
equation

Zt = β ∗ Zt−1 + εt , t ∈ Z.

where β ∈ [0, 1), {εt }t∈Z is an innovation sequence of i. i. d. nonnegative integer-
valued random variables not depending on past values of {Zt }t∈Z, {Zt }t∈Z is a
stationary process with BerG(π, μ) marginals, i. e., with probability mass function
given by Eq. (1). It is also assumed that the counting series of β ∗ Zt−1 is indepen-
dent of other counting series, and, moreover, independent of the innovation sequence
{εt }t∈Z.
Note that Ristić et al. (2009) used their INAR(1)NB model together with a geometric
marginal distribution, referred to as the NGINAR(1) model by these authors, which
corresponds to the boundary case π = 0 of the BerG-INAR(1)NB model.

We are able to adapt Proposition 5. Note that the condition given there can be

restated as β ∈
(

α π
1−π

,
μ(1−α)
1+μ

)
, which simplifies to β ∈

(
0, μ

1+μ

)
if α = 0.

Corollary 6 If β < μ/(1 + μ), then the distribution of the innovations sequence
{εt }t∈Z is a convolution between two independent random variables with Y1 ∼
BerG(π, β(1 − π)) and Y2 ∼ ZMG

(
β(1 + μ)/μ, μ

)
.

Note that Y2 follows a zero-inflated geometric distribution according to Remark 1. The
properties for this BerG-INAR(1)NB process follow from the ones given in Sect. 3.1
by setting α = 0.

At this point, one may ask for the benefits of the full INAR(1)BiNB model (having
four parameters) compared to the simplified INAR(1)NB model (having only three
parameters since α = κ = 0). Both models have the same marginal distribution,
BerG(π, μ), and both are CLAR(1) models with the ACF being given by ρ(h) = ρh

(where ρ = α+β and ρ = β, respectively). So let us assume the marginal distribution
to be fixed as BerG(π, μ).

Then, the extent of autocorrelation ρ for the reduced INAR(1)NB model is bound
from above byμ/(μ+1) (see Proposition 6), while it is only bounded byμ/(μ+1−κ)

with κ < 1− π for the full INAR(1)BiNB model. So the full model, having the same
marginal distribution as the reduced model, allows for stronger autocorrelation levels.
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(a)

μ

(b)

κ

Fig. 2 a Upper bound for ρ(1) = ρ against μ, where κ = 0 corresponds to INAR(1)NB model. b
Pr(Zt = 0|Zt−1 = 0) against κ for (μ, π) = (1, 0.2), where dashed line shows Pr(Zt = 0) = 0.4

This is illustrated by Fig. 2a, where the upper bound is plotted as a function of μ

for different levels of κ , and where this upper bound moves toward 1 with increasing
κ .

In a similar line, also the zero-zero transition probability, which determines the
length of runs of zeros in the generated sample paths, is influenced by the restrictions
imposed by the reduced INAR(1)NB model. From Eq. (15), we know that

Pr(Zt = 0|Zt−1 = 0) = Pr(εt = 0) = 1 − π

1 + μ
· 1 + β(1 + μ) + μα

1 + β(1 − π) − πα

= 1 − π

1 + μ
· 1 + ρ(1 + μ) − κρ

1 + ρ(1 − π) − κρ
,

where the respective first factor, 1−π
1+μ

, is the marginal probability for observing a zero.
For illustration, let us consider the model with marginal distribution BerG(1, 0.2),
which has marginal mean 1.2 and zero probability 0.4. Figure 2b shows the zero-
zero transition probability as a function of κ for different levels of the autocorrelation
parameter ρ. First note that the graphs for ρ = 0.6, 0.7, 0.8 are not defined in κ = 0,
i. e., the reduced INAR(1)NB model does not even allow for such strong levels of
autocorrelation. Then, it can be seen that with κ increasing toward 1 − π = 0.8, the
zero-zero transition probability further increases.

4 Parameter estimation

The novel BerG-INAR(1)BiNB model is able to describe count data processes hav-
ing an autoregressive autocorrelation structure, and it allows the counts to show
underdispersion, equidispersion or overdispersion. To make the model applicable in
practice, approaches for parameter estimation are required. Such approaches are pre-
sented in Sect. 4.1, while Sect. 4.2 investigates these approaches in a small simulation
study.
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4.1 Approaches for parameter estimation

Let Z1, Z2, . . . , Zn be a random sample of size n from a stationary BerG-
INAR(1)BiNB process with PMF (1). To estimate the model parameters, a full
maximum likelihood (ML) approach is easily implemented. Using that Z1 ∼
BerG(π, μ) and that the conditional distribution of Zt given Zt−1 is computed from
(15) (also remember Remark 2), the log-likelihood function is computed as

�(μ, π, α, β) = log[Pr(Z1 = j)] +
n∑

t=2

log
[
Pr(Zt = j |Zt−1 = i)

]
. (18)

TheMLestimators α̂ML, β̂ML, π̂ML and μ̂ML ofα, β, π andμ, respectively, are defined
as the values of α, β, π and μ that maximize the log-likelihood function in (18). The
resulting estimates are computed by a numerical optimization of the log-likelihood
function (18) in (μ, π, α, β)�, which certainly has to consider the parameter con-
straints (11). To simplify these parameter constraints (11) and hence the numerical
optimization, the following reparameterization is recommended:

π ′ := (α + β) π, μ′ := (1 − α − β) μ,

which is solved as π = π ′/(α + β) and μ = μ′/(1 − α − β). Then (11) becomes

α, β ≥ 0, α + β < 1, 0 < π ′ < β, μ′ > β,

which are simple linear constraints. These can be used together with, e. g., R’s
constrOptim (R Core Team 2016).

For the numerical optimization, starting values for the model parameters (μ, π, α,

β)� (or (μ′, π ′, α, β)�, respectively) are required. Starting values for (μ, π) might
be obtained in two ways: In view of (3), the method of moments (MM) leads to

μ̂MM = 1
2 (Z + ÎZ − 1) and π̂MM = 1

2 (Z − ÎZ + 1),

where Z = (1/n)
∑n

t=1 Zt , ÎZ = γ̂ (0)/Z and γ̂ (k) = (1/n)
∑n−k

t=1 (Zt − Z)(Zt−k −
Z).

Proposition 7 The method of moments yields consistent estimates.

Proof Strong consistencyof these estimators follows from the ergodicity of the process
and the properties of the convergence in probability. �	

Alternatively, fromEq. (1), we have that P(Zt > 0) = π+μ
1+μ

, P(Zt > 1) = μ(π+μ)

(1+μ)2

and Pr(Zt = 1) = π+μ

(1+μ)2
. Thus, we have that Pr(Zt>1)

Pr(Zt=1) = μ and [Pr(Zt>0)]2−Pr(Zt>1)
Pr(Zt=1) =

π , which implies that probability based (PB) estimators of the parameters μ and π

are given by

μ̂PB =
∑n

t=1 I{Zt>1}∑n
t=1 I{Zt=1}

and π̂PB = (
∑n

t=1 I{Zt>0})2 − n
∑n

t=1 I{Zt>1}
n

∑n
t=1 I{Zt=1}

.

123



An INAR(1) process for modeling count time series…

The parameters α and β (or ρ and κ , respectively) can be estimated through the ACF
and the transition probabilities. From Eqs. (13) and (15), we have that

ρ(1) = α + β = ρ and p := Pr(Zt = 0|Zt−1 = 1)

Pr(Zt = 0|Zt−1 = 0)
= 1 − α

1 + β
.

Solving these equations for α and β, the PB estimators of α and β are defined as

α̂PB = 1 − p̂(1 + ρ̂)

1 − p̂
and β̂PB = ρ̂ − 1 + p̂

1 − p̂
,

respectively, where ρ̂ := ρ̂(1) = γ̂ (1)/γ̂ (0) and p̂ =
∑n

t=2 I{Zt=0,Zt−1=1}/
∑n

t=1 I{Zt=1}∑n
t=2 I{Zt=0,Zt−1=0}/

∑n
t=1 I{Zt=0} .

The idea to use the conditional probabilities to estimate the parameters of an INAR
process was proposed in Nastić et al. (2017).

Proposition 8 The estimators α̂PB, β̂PB, π̂PB and μ̂PB are strongly consistent for esti-
mating α, β, π and μ, respectively.

Proof The BerG-INAR(1)BiNB process {Zt }t∈Z is a strictly stationary and ergodic
process. Thus, the statistics

∑n
t=1 I{Zt>0},

∑n
t=1 I{Zt=1},

∑n
t=1 I{Zt>1} and ρ̂(1) are

consistent estimators of Pr(Zt > 0),P(Zt = 1),Pr(Zt > 1) and ρ(1), respectively.
Finally, the consistency of the PB estimators follows from this and the properties of
the convergence in probability. �	

4.2 Monte Carlo simulation study

In order to compare the performances of the proposed estimators previously discussed,
in this section, we perform a small simulation study for different sample sizes and for
different parameter values. All simulations were carried out using the R programming
language (RCore Team 2016), also see Remark 2. The data set Z1, . . . , Zn was always
generated according to model (10). The empirical results displayed in the table and
box plots, that is, the empirical biases and mean square errors (MSE), were computed
over 1000 replications. The values of the MSE are given between parentheses. The
sample sizes considered were n = 200, 400 and 800. We considered three scenarios:
α = 0.3, β = 0.1, π = 0.2, μ = 0.2 (equidispersed, ρ(1) = 0.4), α = 0.4, β =
0.2, π = 0.3, μ = 2.0 (overdispersed with IZ = 2.7, ρ(1) = 0.6) and α = 0.25, β =
0.15, π = 0.35, μ = 0.30 (underdispersed with IZ = 0.95, ρ(1) = 0.4).

Table 1 presents the biases and MSE of the estimators of the parameters α, β, π

and μ. From Table 1, it can be seen that the ML estimator causes much smaller biases
(in absolute values) andMSE than the other estimators, for all scenarios. As expected,
increasing the sample size reduces substantially both bias and MSE.

The previous findings are confirmed by the box plots shown in Fig. 3, which were
obtained for sample size n = 400 for all scenarios. Again, both biases andMSE for the
ML estimators are smaller than those for the other methods. Therefore, we recommend
the use α̂ML, β̂ML, π̂ML and μ̂ML as the estimators for the parameters α, β, π and μ
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Fig. 3 Box plots from 1000 simulated estimates of α, β, π and μ, sample size n = 400. a α = 0.30, b
β = 0.10, c π = 0.20, d μ = 0.20, e α = 0.40, f β = 0.20, g π = 0.30, h μ = 2.00, i α = 0.25, j
β = 0.15, k π = 0.35, l μ = 0.30

of a BerG-INAR(1)BiNB process, having a good performance in terms of bias and
MSE.

5 Applications to real data

Here, we conduct two applications of the BerG-INAR(1)BiNB model to real data for
illustrative purposes. We estimate the unknown parameters of the fitted models by the
ML method, as discussed in Sect. 4.1. We also compare the full BerG-INAR(1)BiNB
process with the reduced BerG-INAR(1)NB process, remember the discussion in
Sect. 3.3.

5.1 Iceberg order data

As a first example, let us consider a time series of counts of iceberg orders (for the ask
side, per 20 min) with respect to the Deutsche Telekom shares traded in the XETRA
system of Deutsche Börse. The data were collected for 32 consecutive trading days in
the first quarter of 2004 (800 observations), and they were already analyzed by Jung
and Tremayne (2011), Weiß (2015).
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Fig. 4 Plots of time series, SACF, SPACF and PMF for iceberg counts (Sect. 5.1)

A plot of the data is shown in Fig. 4, and their sample autocorrelation and partial
autocorrelation function (SACF and SPACF, respectively) indicate a first-order autore-
gressive autocorrelation structure with ρ̂(1) = 0.6355. The empirical PMF (shown
in black in Fig. 4, while the gray bars refer to the fitted BerG distribution below) has
mean 1.4063 and dispersion index 1.5512. The latter value is significant according to
the overdispersion test by Schweer and Weiß (2014) (p value about 0). So altogether,
an AR(1)-like model being able to explain overdispersion is required. Therefore, we
try to fit the BerG-INAR(1)BiNB model to the data.

The ML estimates are determined as described in Sect. 4.1 by using R’s
constrOptim. The starting values are chosen based on the above moment esti-
mates: π̂MM = 0.4275, μ̂MM = 0.9787, and α, β are initialized by ρ̂(1)/2. The final
ML estimates are

α̂ML = 0.4251, β̂ML = 0.1842, π̂ML = 0.2633, μ̂ML = 1.0668.

Approximate standard errors are obtained from the inverse Hessian as 0.0453, 0.0507,
0.0411 and 0.1099, respectively. Let us analyze if this model is really adequate for
the given data. First, we compare properties of the fitted model with the empirical
ones as computed from the data. The fitted model’s mean, π̂ML + μ̂ML = 1.3301
(approximate standard error 0.1073), and dispersion index, 1.8036, are reasonably
close to the empirical values 1.4063 and 1.5512, respectively. The whole BerG-PMF
agrees quite well with the empirical one, see the gray resp. black bars in Fig. 4. The
proportion of zeros within the fitted model equals 0.3565, the empirical one 0.3188.
Finally, also the ACFs are in good agreement, e. g., with the lag-1 values being 0.6093
(model) and 0.6355 (empirical), respectively.

As a second tool for checking the model adequacy, we computed the standardized
Pearson residuals using (12). These residuals do not show any significant ACF value,
confirming the adequacy of the fitted model’s autocorrelation structure. The mean of

123



An INAR(1) process for modeling count time series…

the residuals, 0.0261, is close to 0, and their variance, 0.8742, is close to 1. In fact,
the variance is slightly smaller than 1, so the data show slightly less dispersion than
being considered by the model (Harvey and Fernandes 1989), which goes along with
the slight discrepancy between the dispersion index values above. But altogether, the
model constitutes an adequate fit to the data.

Finally, let us discuss the question if the reduced BerG-INAR(1)NB model from
Sect. 3.3 might serve as an alternative for the data. Already the moment estimates
π̂MM = 0.4275, μ̂MM = 0.9787 and β̂MM = ρ̂(1) = 0.6355 indicate the weak point
of this model: The data show too much autocorrelation with respect to the model, the
upper bound for β is μ̂MM/(μ̂MM + 1) = 0.4946 and thus violated. Doing an ML
estimation anyway, one ends upwith β̂ML = 0.6503 (close to the actual autocorrelation
level) and π̂ML = 0.2957, μ̂ML = 1.8599. Compared to the estimates of the full
model, we realize a much larger estimate for the BerG’s parameter μ. As a result, the
fitted model is not adequate for the data, e. g., its mean 2.1556 is much larger than
the empirical mean 1.4063, and also its dispersion index (2.5642 vs. 1.5512). So the
full model is clearly preferable with respect to the iceberg counts data. Analogous
arguments apply to the NGINAR(1) model (Ristić et al. 2009), which constitutes a
special instance of BerG-INAR(1)NB model, see the discussion after Definition 3.

5.2 Family violence data

In the second application, we consider the series of monthly counts of family violences
in the 11th police car beat in Pittsburgh, which have already been analyzed byBakouch
and Ristić (2010). The data set is obtained from the crime data section of the fore-
casting principles site (file PghCarBeat.csv at http://www.forecastingprinciples.
com/index.php/crimedata), and it is also available from the authors upon request. It
consists of 144 observations, starting in January 1990 and ending in December 2001.

The time series data, their SACF and SPACF as well as their PMF (again with the
PMF of the fitted model in gray, see below) are displayed in Fig. 5. Analyzing Fig. 5,
we conclude that a first-order autoregressive model may be appropriate for the given
data series, because of the clear cutoff after lag 1 in the SPACF. Furthermore, the
behavior of the series indicates that it may be stationary. The sample mean is 0.4028,
the sample variance is 0.3821, and the first-order autocorrelation is 0.1770. The ratio
between the sample variance and the sample mean (empirical dispersion index) is
0.9486. The application of the overdispersion test by Schweer and Weiß (2014) did
not reject the null hypothesis of equidispersion (Poisson INAR(1) model), with the p
value for the test being 0.6831.

The ML estimates for the fitted model are (̂αML, β̂ML, π̂ML, μ̂ML) = (0.0685,
0.1332, 0.2408, 0.1669). Since these estimates (̂αML and β̂ML) are close to the bound-
ary of parameter space as defined by (11), the approximate standard errors become
rather large, given by ≈ (0.23, 0.28, 0.06, 0.07). The mean, variance and ACF within
the estimated model are given by, respectively, π̂ML + μ̂ML = 0.4077 (approxi-
mate standard error ≈ 0.065), π̂ML(1 − π̂ML) + μ̂ML(1 + μ̂ML) = 0.3776 and
α̂ML + β̂ML = 0.2017. Note that these values for the fitted model are close to
the corresponding empirical values. An analogous statement holds with respect to
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Fig. 5 Plots of time series, SACF, SPACF and PMF for family violence counts (Sect. 5.2)

the dispersion index (0.9261 within the fitted BerG-INAR(1)BiNB model, 0.9486
empirically), although we did not observe a significant violation of the equidispersion
property. Our model not only captures well the dispersion index, it does also better
than a Poisson model if considering the proportion of zeros. In the data set, this is
0.6597, while the proportion of zeros based on the estimated BerG-INAR(1)BiNB
model is 0.6506 (a Poisson INAR(1) model would have 0.7121). Thus, the proposed
model works well for capturing the proportion of zeros in this application, in contrast
to the Poisson INAR(1) model. In fact, the whole PMF of the fitted model (gray)
is very close to the empirical one (black), see Fig. 5. Also an analysis of the Pear-
son residuals did not lead to any contradictions (e. g., mean 0.0056 and variance
1.0484).

For the reduced model with α = 0 (i. e., BerG-INAR(1)NB model), in con-
trast, we observe again that the parameter estimates are out of the parameter space
(see Proposition 5): the moment estimate β̂MM = 0.1773 violates the bound
μ̂MM/(1+ μ̂MM) = 0.1494, andML estimation essentially ends up in a further model
reduction, (β̂ML, π̂ML, μ̂ML) = (0.6475, 0.0000, 1.8369). In view of the equidisper-
sion, however, a geometric marginal distribution is not appropriate. Thus, also for
this data set, the reduced model cannot be used. And also the special instance of
the NGINAR(1) model (Ristić et al. 2009), see the discussion after Definition 3,
cannot be used here (note again that a geometric marginal distribution is necessarily
overdispersed). Finally, Bakouch andRistić (2010) applied the (three-parameter) zero-
truncated Poisson INAR(1) model to the data. They obtained a slightly lower value for
the information criterion AIC (234.2462 vs. 236.5801), but the model appears a bit
artificial since it can only be applied after shifting the data. We conclude by pointing
out that the family violence counts might be affected by underreporting, because such
type of offense might not always be presented to the authorities; a method for dealing
with underreported counts is proposed by Fernández-Fontelo et al. (2016).

123



An INAR(1) process for modeling count time series…

6 Conclusions

Wediscussed the distribution of the convolution of a Bernoulli and a geometric random
variable and summarized some of its properties. Afterward, we introduced a stationary
first-order nonnegative integer-valued autoregressivemodel for count data processwith
Bernoulli-geometric marginals based on a new thinning operator. The new thinning
operator can be interpreted as the sum of two know thinning operators. The new
model has several advantages: It can be used for modeling time series of counts
with equidispersion, underdispersion or overdispersion, and it has simple innovation
structure. The main properties of the new process are derived. Three methods for
estimating the model parameters are considered. The simulation results show that the
ML estimator presents much smaller biases and MSE than the other estimators. Thus,
we recommend the use of the ML method to estimate the process parameters of an
BerG-INAR(1)BiNB process. Finally, we fitted the BerG-INAR(1)BiNB model to two
real data sets. As part of future research, it would be of interest to extend the proposed
model to autoregressive order p > 1 (Du and Li 1991; Latour 1998).
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