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Astrocytic Expression of the Immunoreceptor CD300f Protects Hippo-
campal Neurons from Amyloid-p Oligomer Toxicity In Vitro
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Abstract: Background: Astrocytes contribute to neuroinflammation that accompanies neurodegenera-
tive disorders such as Alzheimer’s disease (AD). In this sense, the toxicity of these diseases might be
attenuated through the modulation of astrocytic inflammatory responses. Recently, the CD300f im-
munoreceptor was described as a new member of the CD300 immunoreceptor family, showing promis-
ing modulatory properties.

Objective: Here, we investigated whether overexpression of hCD300f (the human isoform of CD300f) in
astrocytes protects hippocampal neurons against the degeneration induced by amyloid-beta (AB) oli-
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Method: Astrocyte monolayers were transfected with hCD300f before seeding the hippocampal neu-
rons, and then the co-culture was exposed to A4, oligomers (5 uM, 48h).

oL 0.2174/15672050146661702021  Results: hCD300f expression significantly abrogated the neuronal loss elicited by AP. This effect was

21709 dependent on neuron-astrocyte cell-cell interactions since no protection was observed using conditioned
media from transfected astrocytes. Astrocyte modulation was dependent on the cytoplasmic signaling
tail of hCD300f. Furthermore hCD300f expression did not affect the ability of astrocytes to uptake AP;.
42 oligomers by endocytosis, which discards the possibility that increased AP, .4, clearance could mediate
neuroprotection by hCD300f.

Conclusion: These results suggest that the astrocyte-directed expression of the hCD300f immune recep-
tor can be a neuroprotective strategy in AD disease.

Keywords: Alzheimer’s disease, Amyloid-beta, Astrocytes, CD300f, neuroprotection; endocytosis.
1. INTRODUCTION cluding astrocytes [7, 8], and specific targeting of the in-
flammatory phenotype of this cell type ameliorates neuro-
logical changes in AD models [9]. Recently, mutations of
immunoreceptor TREM2 have been associated to increased
susceptibility to AD and other neuropathologies [10].
CD300f (IREM-1, IgSF13, and CMRF-35A5 in humans and
CLM-1, LMIR3, MAIR-V, and CD300LF in mice) is a
member of the CD300 family of immunoreceptors. It dis-
plays two cytoplasmic tyrosine-based inhibitory motif
(ITIM) [11] and also a Phosphatidylinositide 3-kinases
(PI3K) activating motif [12], and presents a FceRy-mediated
activating potential [13]. Upon activation, the CD300f ITIM-
motifs become phosphorylated in their tyrosine residues, and
the Src2 homology domain tyrosine phosphatase 1 (SHP1) is

Alzheimer’s disease (AD) is the most prevalent type of
dementia worldwide, whose prevalence is expected to double
every 20 years, resulting in 80 million subjects affected by
2040 [1]. AD is confirmed histologically by the presence of
senile plaques, whose major protein content are amyloid-f8
peptides (AP) [2], which have been considered the key ele-
ment that induces further pathological changes [3, 4]. In ad-
dition to its direct toxic effects, Ap can also induce an in-
flammatory response, which in turn is believed to increase
neurodegeneration in AD affected brains [5, 6]. The toxicity
induced by inflammation depends on several cell types in-
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then recruited and propagates an anti-inflammatory signal
over the cell [11]. Interestingly, astrocytes and pyramidal
neurons are the cells that express the highest levels of SHP1
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in the brain, and the reduction of its activity induces basal
astrocyte reactivity [14].

The role of CD300f in neuron-glia interactions is largely
unknown. A putative CD300f ligand has been described in
the normal brain and its expression is enhanced after an
acute excitotoxic brain injury [15]. Moreover, the overex-
pression of CD300f in this excitotoxic model was neuropro-
tective. CD300f knockout mice show increased inflamma-
tion and a worsened outcome in experimental autoimmune
encephalomyelitis [16], several models of allergy [17] and in
a model of Systemic Lupus Erythematosus [18]. The mecha-
nisms of neuroprotection by CD300f involves the modula-
tion of inflammation, as the upregulation of nitric oxide and
Interleukin-1 beta (IL1f) correlates with the increased sever-
ity of experimental autoimmune encephalomyelitis in
CD300f knockout animals [16]. Moreover, through the ITIM
motifs, CD300f inhibits Toll receptor signaling [19], which
is neurotoxic after ischemia [20]. Taken together, these data
suggest that the modulation of inflammatory reactions by
CD300f in the central nervous system (CNS) may be an im-
portant component of both acute and chronic neurodegenera-
tive conditions. In this context, the present work aimed to
explore the potential of the expression of CD300f in astro-
cytes as a neuroprotective strategy against AP toxicity in-
vitro.

2. MATERIALS AND METHODS
2.1. Animals

All primary cultures were made from Wistar rats, which
were housed under standard laboratory conditions with
light/dark cycle (12/12h), lights on at 7:00 AM, and food and
water were provided ad libitum.

2.2. Cell Culture

Primary astrocytes cultures were prepared from 1-day-
old rat pups according to the procedures of Saneto and De
Vellis [21] with small modifications previously published
[22]. The resulting astrocyte monolayers were 98% pure as
determined by glial fibrillary acidic protein (GFAP) im-
munoreactivity.

In order to produce the co-cultures, primary hippocampal
neurons were collected in embryonic day 18 and were pre-
pared as adapted from Kaech and Banker [23]. Primary neu-
rons were seeded over previously transfected (24 hours be-
fore) astrocytic monolayers and co-cultures were maintained
in DMEM medium supplemented with 5% FBS and 5%
horse serum. After 24 hours, co-cultures were exposed to
ABi42.

2.3. Transfection

Primary astrocytes were transfected by lipofectamine ac-
cording to manufacturer’s protocol. The pcDNA3 plasmid
was used empty in control conditions; or it encoded the full-
length CD300f human isoform (hCD300f) complementary
DNA (cDNA); or the hCD300f cDNA lacking the cytoplas-
mic domain (hCD300fAcyt) [12]. The cytomegalovirus
(CMV) promoter was used to control expression.
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The expression of hCD300f was further confirmed using
three different astrocytic cultures (N=3) and two different
primary antibodies (UPD1 and UPD2 [11]. Transfection fol-
lowed a similar procedure as described above, but, cells were
suspended by trypsin incubation before 4% paraformalde-
hyde (PFA) fixation. Next cells were incubated with primary
mouse anti-CD300f antibody (UPD1 or UPD2 1:30) fol-
lowed by secondary anti-mouse antibody (1:200; Invitrogen,
Cat. N° A-11061). Then cells were analyzed by flow cytome-
try using a LSRFortessa (Beckton and Dickinson). Data were
analyzed using the FCS Express Software (De Novo Soft-
ware): The events were defined as the isolated population in
the forward x side light scatter (FSC vs SSC) plot. The per-
centage of cells expressing CD300f was defined as the tail of
fluorescence-intensity histogram from hCD300f-transfected
cultures that exceeds the fluorescence-intensity histogram
from control transfected cultures.

2.4. Amyloid-beta Peptide

AP oligomers were prepared as previously described
[24].

These preparations were characterized by western-blot
under low reducing conditions as previously published [25].
After electrophoreses proteins were transferred to a nitrocel-
lulose membrane. The immunostaining of A was carried
out with primary monoclonal antibody (6E10, 1:1000, SIG-
NET) followed by a horseradish peroxidase-conjugated sec-
ondary antibody (1:20,000). Ap bands were made visible by
chemiluminescence ECL Kit.

2.5. Immunocytochemistry

Cells were fixed with PFA in 0.1 M PBS (pH 7.2) for 30
minutes and processed for immunocytochemistry as previ-
ously described [26]. The content of NeuN-immunostained
cells defined the remaining neuronal population after A
exposure, hence reflecting the influence of previous transfec-
tion over neuronal degeneration. Neurons were counted as
every NeuN-immunostained cell present in the central square
covering 17.4% of the cultured well in 96 multiwell-plates.
The cell counting was carried out by a blinded investigator
for the treatments over digitalized images using the ImageJ
software with the cell counter plug-in. To improve data ho-
mogeneity, neuronal survival after A exposure was normal-
ized by the neuronal content following correspondent trans-
fection in the absence of AP. Data are presented as the aver-
age (:SEM) from 4 experiments (N=4) run in triplicate.

In order to detect the internalization of AfB-coated fluo-
rescent beads (Invitrogen, Cat. N° F8781; wavelength:
365/415 nm), immunostaining with anti-Af was compared
between 0.1% Triton-x100 permeabilized and non-
permeabilized cultures. Briefly cell cultures were washed
and incubated in blocking solution with primary antibody
against AP (6E10, 1:1000), followed by fluorescent secon-
dary antibody (1:1000; Invitrogen, Cat. N° A-11061, wave-
length: 578/603 nm), in the same conditions as described
above. Cell culture images were taken by AxiocamMRm
camera system (Carl Zeiss Inc., Thornwood, NY, USA) cou-
pled to a fluorescent microscope (Axiovert 200M, Carl Zeiss
Inc.). The location of AP was confirmed in images from 2
additional experiments (N=3).
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2.6. Evaluation of Ap Endocytosis

Primary astrocytes were cultivated in 6 multiwell plates.
They were transfected to overexpress hCD300f or with the
empty plasmid pcDNA3 (control). Forty-eight hours after
transfection, cultures were incubated with AB-coated fluo-
rescent beads for six hours and the intensity of beads’ fluo-
rescence in GFAP-positive cells was measured by flow cy-
tometry as a result of AP endocytosis. Briefly, 0.02 pum
FluoroSpheres were covered with A according to manufac-
turer’s protocol or they were simply stored in presence of
bovine serum albumin (BSA). The coating occurred in a
proportion of 7.6 molecules of AP,4, peptide per bead.
FluoroSpheres mixture was concentrated by dialysis (Centri-
con) and it was finally sterilized by irradiation. At the end of
exposure with fluorescent beads, cells were suspended and
fixed with 4% paraformaldehyde and immunostained with
anti-GFAP as described above. At last the cellular content of
fluorescence was quantified in a FACS Calibur (BD). Data
were computed as the sum of the fluorescence intensity from
FluoroSpheres in all GFAP-positive cells. Analysis was car-
ried out with FlowJo software and data are presented as the
average from 3 experiments (N=3) run in uniplicate.

2.7. Statistical Analysis

Because data presented a normal distribution, they were
analyzed by one way or factorial ANOVA followed by
Duncan post-hoc test whenever appropriate. To all analysis,
it was considered 0=0.05 and only the analysis, whose statis-
tical power were higher than 0.7, were considered relevant.
Data are presented as meantSEM (exceptions are indicated
in the text).

All of the experimental protocols were approved by the
Animal Care and Use Ethics Committee of UNIFESP and all
procedures followed the eighth edition of the Guide for the
Care and Use of Laboratory Animals (by The National
Academy of Sciences)

3. RESULTS

3.1. hCD300f Protects Neurons from Ap;4 Oligomer—
induced Toxicity

Given the relevance of astrocytes to proinflammatory
signaling and neuronal death induced by A and their easi-
ness to be transfected, they were elected as the cell model for
a putative therapeutic overexpression of hCD300f. The trans-
fection resulted in hCD300f expression in 22.25 % + 4.45
(STD) of the astrocytes in a confluent culture (Fig. 1A). Hip-
pocampal neurons were seeded over hCD300f-
overexpressing astrocytes 24 hours after transfection and,
following additional 24 hours, the co-cultures were exposed
to SuM A4, oligomers for 48 hours. The oligomeric com-
position of APi4, preparations was confirmed by western-
blot (Fig. 1B). The transfection of astrocytes by itself did not
influence was not a statistically relevant factor influencing
neuronal survival (data not shown , ANOVA, Fg,,=1.00,
p=0.47). Notwithstanding, the content of transfection (e.g.
the cDNA loaded in the pcDNA3 plasmid) determined the
neurodegeneration induced by AP (N=4 in triplicate;
ANOVA, Fs/19=3.49, p=0.04). As expected, the exposure of
control-transfected co-cultures to SuM of oligomeric AP;.4
resulted in substantial neuronal toxicity, reducing neuronal
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survival to 63.88% = 14.63% (Duncan post-hoc, p=0.008).
Interestingly, this neurotoxicity was prevented in hCD300f-
transfected co-cultures (as compared to control transfection;
96.01% + 7.84% neuronal survival;Duncan post-hoc,
p=0.04; Fig. 1C and D). Nevertheless, the neuroprotective
effect of hCD300f was not observed after the transfection
with the mutant form of hCD300f lacking its cytoplasmic tail
(hCD300fAcyt, as compared to control transfection (81.13%
+ 11.15% neuronal survival; Duncan post-hoc, p=0.62), and
thus not capable of signaling through SHP1 or PI3K. Fur-
thermore, to explore whether the protective activity of
hCD300f against AB;4, was due to soluble factors released
by astrocytes, conditioned medium from hCD300f trans-
fected astrocytes was added to AP;4, treated co-cultures.
This treatment also failed to significantly prevent neuronal
death (as compared to control transfection; 77.89% + 6.54%
neuronal survival; Duncan post-hoc, p=0.36; Fig. 1D).
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Fig. (1). The overexpression of hCD300f prevents AB,.4, induced
neurotoxicity. (A) A representative histogram of cell counting ac-
cording to the fluorescence intensity from hCD300f immunolabel-
ing as assessed by flow cytometry. The grey dashed line represents
astrocytes which were not immunolabeled. The green and red lines
represent immunolabeled astrocytes transfected with control plas-
mid and with hCD300f, respectively. (B) Oligomeric composition
of AP;.4> was checked by western blot before samples were added
to co-cultures. (C) Representative images of NeuN-immunostaining
from co-cultures whose astrocytes were previously transfected with
pcDNA3 empty plasmid (control; upper panel) or hCD300f cDNA
(lower panel). The neuronal survival after SuM oligomeric AP.4,
exposure is illustrated in D as group mean and SEM. The columns
are labeled according to the cDNA used in transfection. The neu-
ronal content that followed AP in each condition is indicated as a
percentage of neuronal counting following the same transfection
without AP. The horizontal dashed line represents a reference for
the absence of neurodegeneration. hCD300fAcyt represent
hCD300f cDNA lacking the cytoplasmic domain. CM hCD300f
column represents co-cultures whose astrocytes were not trans-
fected, but were treated with conditioned medium from hCD3001-
transfected astrocytes simultaneously with the A4, exposure. *
indicates p<0.05 as compared to control transfection, according to
Duncan post-hoc test.
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3.2. hCD300f Maintains Af;.4; Endocytosis

The toxicity of AP is utterly dependent of its concentra-
tion in brain parenchyma, which is determined by the bal-
ance between synthesis, cleavage and clearance of the pep-
tide. Astrocytes, the most abundant cell population in human
CNS, play an important role in endocytosis-mediated clear-
ance of AP and ITIM-bearing immune receptors have been
implicated in the modulation of phagocytosis [27-29]. There-
fore, we explored the influence of hCD300f signaling over
the phagocytosis of AP;.4, oligomers by astrocytes wonder-
ing whether increased Ap;.4, internalization could account
for the neuroprotective effect observed after hCD300f over-
expression.

Astrocytes were incubated for six hours with AP;.4;-
coated or BSA-coated fluorescent beads 48 hours after trans-
fection with hCD300f or a control (empty pcDNA3) plas-
mid. Immunocytochemistry against AP confirmed that Ap,;.
s-coated fluorobeads were mostly internalized by astrocytes,
as an intense signal was observed in the presence of the per-
meabilizing agent Triton X-100, whereas very faint staining
was seen in its absence (Fig. 2A). Moreover, both astrocyte
cultures transfected with the control plasmid or with
hCD300f internalized higher amounts of Af;.4,-coated beads
than those incubated with BSA (ANOVA, F,14,=8.40, p=0.01
Fig. 2B). Notwithstanding, the internalization of AB;.4, after
the overexpression of hCD300f was similar that after control
transfection (ANOVA, F,14,=0.23, p=0.64).

4. DISCUSSION

The present work shows that the astrocytic over-
expression of the hCD300f receptor can be a neuroprotective
strategy against AB-induced toxicity in vitro. This neuropro-
tective effect was dependent on the cytoplasmic tail of
hCD300f and on neuron-astrocyte cell-cell interactions. In
addition, the overexpression of hCD300f did not affect en-
docytosis of AP;4, peptide by astrocytes, and thus an in-
creased clearance of A;4, was not the neuroprotective
mechanism of hCD300f.

The present work is however limited by the absence of
endogenous basal expression of CD300f by astrocytes in
vivo. Its expression is known to take place mainly in the sur-
face of the cells of myeloid lineages such as macrophages,
neutrophils, dendritic cells, granulocytes and mast cells [30].
In addition, CD300f has been found to be expressed in culti-
vated CNS cells such as microglia, oligodendrocytes and
neurons, but not in astrocytes under basal conditions [15].
Additional studies should evaluate the safety of astrocyte-
targeted expression of CD300f as well as its neuroprotective
potential in vivo. An interesting possibility in addition to the
astrocytic expression of CD300f- could be the modulation of
microglial/macrophage CD300f signaling for neuroprotec-
tion against AP.

The exposure of hippocampal astrocyte-neuron co-
cultures to 5SuM oligomeric Af,.4; resulted in approximately
40% neurodegeneration. Despite their well-known neurotro-
phic support, astrocytes can become activated by diverse
proinflammatory stimuli, including AP, leading to a pheno-
typic switch that is responsible for an active neurotoxicity
[31, 32]. Accordingly, the modulation of this proinflamma-

Lima et al.

tory phenotype of astrocytes has been assumed to be able to
decrease neuronal degeneration [7, 22]. In agreement with
the beneficial modulation of the astrocytic phenotype, here
the overexpression of hCD300f immunoreceptor in this cell
type was able to abolish the AP, _4;-induced neurotoxicity.
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Fig. (2). Effect of hCD300f overexpression on the endocytosis of
beads coated with AP, 4 oligomer. Astrocyte monolayers were
transfected with the empty plasmid pcDNA3 (control) or encoding
hCD300f cDNA, and 48 hours after they were exposed to AB;.4, or
BSA- coated fluorescent beads for 6 hours. (A) To distinguish intra
and extracellular location of AP,.4-coated beads, the cultures were
immunostained for AP in Triton X-100 permeabilized (higher pan-
els) and non-permeabilized cultures (lower panels). Scale bar =
10um. (B) FACS analysis represented as the sum of fluorescence
intensity from all AB-coated beads internalized by GFAP-positive
cells as a percentage of Control + BSA group. Vertical bars illus-
trate group means (+SEM) relative to Control+BSA.

The exposure of co-cultures to AP;_4, in presence of con-
ditioned medium from hCD300f-transfected astrocytes failed
to prevent neuronal death. This results suggest that neuron-
astrocyte cell-cell contacts were fundamental for the neuro-
protection to occur and that this process was not mediated
solely by trophic factors released by hCD300f-transfected
astrocytes. This cannot however exclude the role of all solu-
ble factors involved in the neuroprotection by hCD300f, but
rather indicate that these factors, by their own, were not
enough to sustain a statistically significant effect. Moreover,
the neuroprotection induced by the transfection with the
plasmid encoding the full-length form of the hCD300f gene
did not persist in the absence of hCD300f’s cytoplasmic tail
(hCD300fAcyt transfection). Thus, the mechanism of neuro-
protection may involve at least one of its cytoplasmic re-
cruiting motifs (e.g. SHP1, Growth factor receptor-bound
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protein 2 - Gbr2, and/or PI3K), rather than only the activa-
tion of putative un-known ligand(s) in other cells by CD300f
extracellular region. The recruitment of SHP1 seems a prob-
able requirement for the observed neuroprotection, given its
high expression in astrocytes [14] and its role in inhibitory
signaling. However, it is not possible to discard that the PI3-
Kinase and Grb2 domains may also participate in the neuro-
protective signaling of astrocytes. This far, the described
ligands for hCD300f are sphingomyelin and ceramide [33],
but these ligands do not propagate signaling events once they
interact with the extracellular domain of hCD300f. However,
it is not possible to discard any influence from all various
ligands based on present results, which is limited to indicate
that neuroprotection requires hCD300f’s cytoplasmatic do-
main. Altogether, these results indicate that the therapeutic
strategies aimed to take benefit of CD300f neuroprotection
should target the activation of this receptor rather than to
modulate its ligand(s).

The increase of AP clearance from brain parenchyma
rises as a promising strategy to reduce amyloidosis in CNS
[34, 35]. An important route for AP elimination is mediated
by the phagocytosis of the peptide, which is carried out by
microglia [36] and markedly by astrocytes [37]. The rele-
vance of astrocyte-mediated clearance becomes more impor-
tant in light that astrocytes constitute the most frequent cell
type in the human CNS [38]. Glial activation by pro-
inflammatory reactions represents a physiological mecha-
nism to enhance phagocytic capacity of the cell [35], as it is
induced by Triggering receptor expressed on myeloid cells 2
(TREM2) [29]. However, the overexpression of hCD300f in
astrocytes leads to a similar endocytosis of Ap;4,-coated
beads as compared to cells transfected with control plasmid.
This fact excludes the possibility that the neuroprotective
effect of hCD300f would be rather a consequence of reduced
AP content in culture medium promoted by increased phago-
cytosis. Nevertheless, the statement that CD300f does not
affect overall AP clearance still needs further investigation
that addresses other mechanisms, such as the secretion of A
proteases neprilysin and insulin degrading enzyme [39, 40].

The interaction between neurons and glia is a well-
known phenomenon. For example, the immunoreceptor
CD200R expressed on microglial cells has been shown to
interact with its ligand CD200, expressed on neurons,
prompting an anti-inflammatory signaling [41]. In addition,
TREM2 was shown to interact with an unknown ligand on
the surface of apoptotic neurons [42]. Another type of im-
munoreceptors, the Sialic acid-binding Ig superfamily lectin-
11 (Siglec-11), which are expressed in microglial cells, binds
to the polysialylated neuronal cell adhesion molecule (PSA-
NCAM), originating a protective response to neurons in co-
cultures [43]. These examples endorse the therapeutic modu-
lation of the interaction between neuron and glial cells may
be oriented towards recovering the homeostatic microenvi-
ronment in the brain.

CONCLUSION

The evidences presented here place CD300f as a piece of
this newly unraveled immunoreceptor-ligand interaction
network of neuron and glial cells, whose properties could be
directed to favor the therapy of neurodegenerative diseases.
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In particular, the astrocyte-directed overexpression of
hCD300f may constitute a gene therapy strategy for AD,
thus demanding further in vivo studies to explore this inter-
esting possibility.
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